91 research outputs found

    Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.

    Get PDF
    Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100

    Produttivita primaria dell' ecosistema marino, turbolenza oceanica e cicli biogeochimici globali

    Get PDF
    Il ciclo globale del carbonio e la concentrazione atmosferica di CO2 sono influenzati dai flussi biogeochimici fra oceano ed atmosfera. Questi flussi dipendono dal funzionamento dell’ecosistema marino; modifiche significative nella dinamica del plancton e nella produttività primaria possono avere rilevanti effetti sul clima. La dinamica del plancton, a sua volta, risente degli effetti di trasporto e rimescolamento indotti dalle strutture a mesoscala quali vortici e fronti, che per questo motivo sono uno degli attori sulla scena della dinamica del clim

    Spatial and temporal characterization of sea surface temperature response to tropical cyclones

    Get PDF
    The spatial structure and temporal evolution of the sea surface temperature (SST) anomaly (SSTA) associated with the passage of tropical cyclones (TCs), as well as their sensitivity to TC characteristics (including TC intensity and translation speed) and oceanic climatological conditions (represented here by latitude), are thoroughly examined by means of composite analysis using satellite-derived SST data. The magnitude of the TC-generated SSTA is larger for more intense, slower-moving, and higher-latitude TCs, and it occurs earlier in time for faster-moving and higher-latitude storms. The location of maximum SSTA is farther off the TC track for faster-moving storms, and it moves toward the track with time after the TC passage. The spatial extension of the cold wake is greater for more intense and for slower-moving storms, but its shape is quite independent of TC characteristics. Consistent with previous studies, the calculations show that the mean SSTA over a TC-centered box nearly linearly correlates with the wind speed for TCs below category 3 intensity while for stronger TCs the SSTA levels off, both for tropical and subtropical regions. While the linear behavior is expected on the basis of the more vigorous mixing induced by stronger winds and is derived from a simple mixed-layer model, the level-off for intense TCs is discussed in terms of the dependence of the maximum amplitude of the area-mean SSTA on TC translation speed and depth of the prestorm mixed layer. Finally, the decay time scale of the TC-induced SSTA is shown to be dominated by environmental conditions and has no clear dependence on its initial magnitude and on TC characteristics

    Cities as biological computers

    Get PDF
    In this paper the authors propose a conceptual model and a bio-computational design method to articulate the world's Urbansphere, suggesting new terms for its co-evolution with the Biosphere. The proposed model responds to principles of biological self-organisation, and operates by embedding a numerical/computational engine, a living Physarum polycephalum, onto a spatial/morphogenetic substratum, a Satellite driven informational territory. This integration is embodied in the Physarum Machine, a bio-digital design apparatus conceived by the authors and further developed within the Urban Morphogenesis Lab at the UCL in London. The use of specifically designed apparatus of material computation to demonstrate and solve problems of urban morphogenesis is not new and the authors refer to the work of German Architect Frei Otto and his theory for the occupation and connection of territories. This research leads to a notion of bio-city of the future where manmade infrastructures and non-human biological systems will constitute parts of a single biotechnological whole. To this respect it can be read as a manifesto for the extension of biotechnology to the scale of the Biosphere (biosphere geo-engineering) by expanding the scope and material articulation of global informational and energetic infrastructures (the internet of things and the internet of energy). In the tradition of design based research, the paper also suggests an application of the proposed model to a specific case study demonstrating its efficacy in the re-conceptualization of the post-industrial and ecologically depleted landscapes of eastern Arizona. In conclusion the experiment describes the potential of augmenting materiality through sensors and microprocessors so that it would become possible to harvest the computational power latent in micro-organisms like the slime mould. The dream outlined here is for an era where descriptive computation will be superseded by our capability to simulate and compute through the world that surrounds us

    Variability of orographic enhancement of precipitation in the Alpine region

    Get PDF
    Climate change impacts are non uniformly distributed over the globe. Mountains have a peculiar response to large scale variations, documented by elevation gradients of surface temperature increase observed over many mountain ranges in the last decades. Significant changes of precipitation are expected in the changing climate and orographic effects are important in determining the amount of rainfall at a given location. It thus becomes particularly important to understand how orographic precipitation responds to global warming and to anthropogenic forcing. Here, using a large rain gauge dataset over the European Alpine region, we show that the distribution of annual precipitation among the lowlands and the mountains has varied over time, with an increase of the precipitation at the high elevations compared to the low elevations starting in the mid 20 century and peaking in the 1980s. The simultaneous increase and peak of anthropogenic aerosol load is discussed as a possible source for this interdecadal change. These results provide new insights to further our understanding and improve predictions of anthropic effects on mountain precipitations, which are fundamental for water security and management

    Atmospheric response to cold wintertime Tibetan Plateau conditions over eastern Asia in climate models

    Get PDF
    Central Asian orography (namely the Tibetan and Mongolian plateaux) sets important features of the winter climate over eastern Asia and the Pacific. By deflecting the mid-latitude jet polewards it contributes to the formation of the Siberian high and, on the lee side, to the advection of dry cold continental air over the eastern Asian coast and the Pacific Ocean, where atmospheric instability and cyclogenesis thrive. While the mechanic forcing by the orography is assessed in a number of modelling studies, it is still not clear how near-surface temperature over the two most prominent orographic barriers of the central Asian continent – the Tibetan and Mongolian plateaux – influences the winter climate. The problem is particularly relevant in view of a well-known cold bias in state-of-the-art climate models in proximity to the Tibetan Plateau, likely related to the modelling of land processes and land–atmosphere interaction over complex orography. Here we take advantage of the large spread in near-surface temperature over the central Asian plateaux within the Coupled Model Intercomparison Project Phase 6 (CMIP6) to study how colder-than-average Asian plateau temperatures impact the atmospheric circulation. Based on composites of the CMIP6 models' climatologies showing the coldest Tibetan Plateau conditions, we find that such negative temperature anomalies appear to amplify the atmospheric response to orography, with an intensification of the eastern Asian winter monsoon and of the equatorward flank of the Pacific jet. The results of the CMIP6 composite analysis are supported by experiments run with an intermediate-complexity atmospheric model, forced by a similar pattern of cold surface temperatures over the central Asian plateaux. Within this setting, the relative influence of the Tibetan and the Mongolian Plateau surface conditions is analysed. Based on the results reported in this work we project that advances in the modelling of the land energy budget over the elevated regions of central Asia could improve the simulation of the climate in the Asian–Pacific sector climate, together with the reliability of climate projections and the performance of shorter-term forecasts.</p
    • …
    corecore